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Analysis of Climb Trajectory Modeling for Separation 
Assurance Automation 

David P. Thipphavong* 
NASA Ames Research Center, Moffett Field, CA, 94035 

Climb prediction uncertainty is a major source of error in trajectory-based automation 
for air traffic management. In this study, the performance of a trajectory-based automated 
separation assurance system is analyzed under different levels of uncertainty in laboratory 
simulations to investigate its robustness to climb uncertainty. Results indicate that this fully 
automated system can successfully detect and resolve 99% of conflicts in the high-altitude 
sectors of Fort Worth Center during 3-20 minutes prior to first loss of separation under 
near-zero uncertainty. Trajectory uncertainty was then incorporated into the simulation in 
the form of weight uncertainty. System performance remained unchanged for these 
scenarios when weight uncertainties ranged ± 10%. However, performance declined to 87% 
when this range was expanded to ± 20%. 

Nomenclature 
a(t)error = along-track error (nmi) 
D = drag (lb) 
g = acceleration of gravity (ft/sec2) 
h = altitude (ft) 
h(t)error = altitude error (ft) 
h(t)pred = predicted altitude at time t (ft) 
h(t)track = radar track altitude at time t (ft) 
L = lift (lb) 
m = aircraft mass (lb) 
T = engine thrust (lb) 
Vg = ground speed (kt) 
Vt = true airspeed (kt) 
Wl = horizontal wind magnitude (kt) 
x, y = east and north position (nmi) 
x(t)pred = predicted x-position at time t (nmi) 
x(t)track = radar track x-position at time t (nmi) 
y(t)pred = predicted y-position at time t (nmi) 
y(t)track = radar track y-position at time t (nmi) 
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I. Introduction 
ontroller workload is a primary factor limiting airspace capacity, and air traffic demand is expected to increase 
substantially over the next 20 years [1]. Numerous concepts to increase airspace capacity through higher levels 

                                                             
* Aerospace Engineer, Automation Concepts Research Branch, David.P.Thipphavong@nasa.gov, AIAA Member. 

C 



 
American Institute of Aeronautics and Astronautics 

 
 

2 

of automation have been proposed in recent years [2-6]. Previous research on automated conflict resolution 
algorithms in fast-time simulations showed that more than 99% of conflicts could be resolved automatically for 1x, 
2x, and 3x of today’s air traffic demand [7,8]. However, these simulations were conducted without uncertainties. It 
is important to determine how well these algorithms perform in the presence of uncertainty, because prediction 
accuracy and robustness [9-13] is important for any trajectory-based automated separation assurance (SA) system. 
Recent research on trajectory-based SA automation found that late conflict detection due to climb uncertainty is the 
most common reason for automated conflict resolution failure [14]. 

This study differs from earlier research on how trajectory uncertainty affects the performance of SA automation 
systems because the uncertainty being incorporated into the simulations of this study was controlled. Uncertainty 
present in the simulations of [14] was mainly due to inherent differences between the aircraft models used by the 
flight simulator and the Trajectory Synthesizer (TS) module of the Center/TRACON Automation System (CTAS) 
that generated trajectory predictions. These include differences in aircraft weight, speed profiles, turn dynamics, 
waypoint capture logic, and thrust models. The current study evaluates SA automation performance in the presence 
of user-specified levels of uncertainty. However, as in [14], the analysis presented here focuses on strategic 
separation in the 3-20 minute time horizon for operations in Fort Worth Center at or above flight level 240. 

Section II introduces the equations of motion used by the TS to generate trajectory predictions in this study, and 
discusses the effect that uncertainty can have on climb trajectory prediction accuracy. Section III presents the 
uncertainty characteristics of a high-fidelity trajectory modeler for two thousand “clean” (i.e., uninterrupted by level 
segments, descent segments, flightplan amendments, etc.) departures in the Dallas/Fort Worth area. Altitude and 
along-track errors were calculated for look-ahead times of up to 12 minutes. Section IV partitions these results by 
aircraft type to determine the contribution of aircraft performance modeling errors and environmental factors in 
climb trajectory uncertainty. Section V analyzes the sensitivity of climb predictions to weight variation with respect 
to current minimum separation criteria and the observed weight variation in current operations. Section VI describes 
the simulation methodology that was used to measure the effect of trajectory uncertainty on SA automation, presents 
a mechanism for incorporating controllable levels of uncertainty, and specifies the performance metric used. Section 
VII evaluates SA automation in a near-zero uncertainty environment. Section VIII analyzes the climb trajectory 
uncertainty characteristics of the simulations under different levels of weight uncertainty, and evaluates SA 
automation as a function of weight uncertainty. Section IX concludes the paper. 

II. Equations of Motion 
This section introduces the equations of motion used to generate the trajectory predictions in this study and 

develops some intuition about the potential effect of uncertainty on climb trajectory prediction accuracy. These 
equations of motion were presented in [15], and are reproduced below for convenience. Additional detail regarding 
the definitions of the angles and speeds used in these equations can be found in the “Equations of Motion” section of 
[15]. Information on the integration methods used to generate trajectories can be found in the subsequent sections of 
that paper. 
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From Equations 1 and 3, uncertainty in aircraft mass (m), thrust (T), drag (D), horizontal wind magnitude (Wl) 
and relative wind angle (

 
!

rel
=!

i
"!

w
) affects altitude trajectory prediction accuracy through the growth rate of 

true airspeed (
  
!V
t
). However, uncertainty in these parameters also affects along-track prediction errors because 

ground speed is equal to true airspeed plus a wind factor, and ground speed is an input into Equations 4-6. As such, 
the magnitude and distribution of both altitude and along-track errors are expected to change in the sensitivity 
analysis of trajectory predictions to weight variation presented in Section V. However, the first task is to determine 
how accurate nominal CTAS trajectory predictions are relative to actual flight paths. 

III. Climb Prediction Uncertainty 
This section analyzes the accuracy of a high-fidelity real-time trajectory prediction modeler for climbing 

departures in the Dallas/Fort Worth area. Trajectory predictions from the Trajectory Synthesizer (TS) module of the 
Center-TRACON Automation System (CTAS) are generated using enroute Center Host track and flightplan data 
(updated every 12 secs for all flights), hourly updates of atmospheric condition forecasts (e.g., wind, temperature, 
pressure) from the National Oceanic and Atmospheric Administration Rapid Update Cycle model, and a database of 
over 100 unique aircraft models. A more detailed description of these data sources can be found in Section II of 
[16]. Traffic data from 8:00 AM to 10:00 PM (local time) in the Fort Worth Air Route Traffic Control Center 
(ARTCC, or Center) for 14 days between mid-February and early March 2008 were used in this analysis. Although 
this section only focuses on climb prediction accuracy, the analysis can be applied to both level and descent 
trajectories as well as other trajectory prediction modelers. 

The accuracy of TS predictions for climbing departures was analyzed by calculating altitude and along-track 
errors using the equations given in [13]. However, instead of segmenting flight paths as in [13], only departures that 
were not interrupted by level segments, descent segments, or flightplan amendments were included in this analysis. 
In this way, the effects of controller input and pilot intent on flight paths were removed as much as possible to allow 
for a more precise analysis of TS prediction accuracy. The 18000 ft altitude threshold was chosen so that flights 
could nominally have 4 minutes to achieve a steady climb speed following the 250 kt speed restriction at 10000 ft 
(assuming a nominal climb rate of 2000 ft/minute). The altitude and along-track errors at a given time t were 
calculated as follows: 

 
  
h(t)

error
= h(t)

pred
! h(t)

track
 (8) 

 
  
a(t)

error
= (x(t)

pred
! x(t)

track
) sin" (t)

pred
+ ( y(t)

pred
! y(t)

track
) cos" (t)

pred
 (9) 

                            
a) b) 

Figure 1. Calculation of a) altitude and b) along-track errors for a “clean” climbing departure. 
 
Histograms of the altitude and along-track trajectory prediction errors for “clean” climbing departures are shown 

in Figs 2 and 3 below for a look-ahead time of 5 minutes. Note that the standard deviation of the altitude errors 
exceeds twice the legal vertical separation limit of 1000 ft. 
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Since trajectory prediction accuracy is a function of look-ahead time, it is important to compute and analyze the 

altitude and along-track errors for relevant look-ahead times. To that end, the altitude and along-track trajectory 
errors for “clean” climbing departures were calculated for look-ahead times of up to 12 minutes. The means and 
standard deviations of these altitude and along-track errors are presented in Figs 4 and 5, respectively. As expected 
the standard deviations grow as look-ahead time increases. It is interesting to note that the means are reasonably 
close to zero for all look-ahead times considered here. The next step is to probe deeper into the underlying causes of 
climb uncertainty by comparing the accuracy of CTAS trajectory predictions for different aircraft types. 

 

 
 
 

IV. Variation of Climb Uncertainty Characteristics Among Aircraft Types 
This section analyzes the variation in climb trajectory prediction accuracy among the 10 most common aircraft 

types in Fort Worth Center. These aircraft comprised about 85% of the available data. First, the altitude and along-
track errors calculated for Section III were categorized by aircraft type. Then, the mean and standard deviation of 
these errors were calculated separately for each aircraft type; summary statistics of the 5-minute climb trajectory 
prediction errors were compiled into Table 1. 

 
 
 
 
 
 
 

Figure 2: Climb trajectory altitude 
prediction errors for 5-minute look-

ahead (Center Host radar track data) 

Figure 3. Climb trajectory along-track 
prediction errors for 5-minute look-

ahead (Center Host radar track data). 

Figure 5. Climb trajectory along-track errors for 
look-ahead times of up to 12 minutes 

Figure 4. Climb trajectory altitude errors for 
look-ahead times of up to 12 minutes. 
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First, consider the wide variation in the altitude trajectory prediction error characteristics among aircraft types in 

Table 1. For example, the altitude errors for MD83 aircraft have a mean of -259 ft and standard deviation of 996 ft. 
By comparison, the altitude errors for E145 aircraft have a greater mean of 3191 ft, and those for CRJ7 aircraft have 
a larger standard deviation of 1734 ft. This wide variation in vertical climb trajectory accuracy among aircraft types 
indicates that the performance models of some aircraft such as the MD82 and MD83 are more accurate than others 
like the E135 and E145. Since the MD8 aircraft performance model was analyzed and the climb prediction accuracy 
of the TS for this aircraft type was improved in previous research [12], this analysis suggests that adjusting the 
performance models of the other aircraft types in Table 1 in a similar manner can have a strong effect on the overall 
trajectory accuracy of the TS for climbing aircraft in the vertical dimension. 

Next, consider the variation in the along-track error characteristics among aircraft types in Table 1. The along-
track mean errors range from -0.43 nmi (MD82) to 0.76 nmi (B737), and the standard deviations range from 1.50 
nmi (CRJ7) to 2.88 nmi (B752) for a 5-minute look-ahead time. Although trajectory prediction accuracy for 
climbing aircraft varies significantly in the vertical dimension among aircraft types, it is similar among aircraft types 
in terms of along-track error. This analysis suggests that environmental factors such as wind, which affects all 
climbing aircraft, are the primary causes of the along-track errors observed here. 

V. Sensitivity of Climb Predictions to Weight Variation 
This section measures the sensitivity of CTAS climb trajectory forecasts to weight uncertainty. Recall that late 

conflict detection due to climb trajectory prediction uncertainty was the largest factor affecting automated conflict 
resolution performance [14]. The first step was to compute a set of trajectory predictions for each climbing aircraft 
using takeoff weights between 60% and 100% (in intervals of 5 percentage points) of the maximum takeoff weight 
for that aircraft’s type. Then, the altitude and along-track errors for each of these trajectories were calculated using 
Equations 8 and 9 (in Section III). Lastly, the means of these altitude errors were calculated for each weight input 
and look-ahead time, and graphed in Fig 6 below. 

Recall from Section III that the altitude prediction errors had a mean and standard deviation of 201 ft and 2101 
ft, respectively, for a 5-minute look-ahead. The weight input used to generate these nominal predictions was equal to 
90% of each aircraft type’s maximum takeoff weight. In Fig 6 below, a -10 % weight input change (to 80%) resulted 
in a +1469 ft mean altitude prediction error while a +10% weight input change (to 100%) led to a -902 ft mean 
altitude prediction error for the same 5-minute look-ahead (denoted by the asterisks in the figure). Note that a 10% 
difference between the actual and modeled weights shifts the mean of the errors by about 1200 ft for a 5-minute 
prediction time, which is near the lower bound of the strategic time frame (3-20 min) for SA automation. This mean 
shift exceeds the current vertical separation standard. This is significant, since takeoff weight variation of more than 
10% within aircraft types is common in current operations [10]. For instance, MD8 aircraft takeoff weights had a 
standard deviation equal to 7.1% of their mean. If these takeoff weights had a Gaussian distribution, then 
approximately 16% of MD8 aircraft had takeoff weights that deviated more than 10% from the mean. MD8 aircraft 
accounted for nearly 40% of the flights in Table 1. The other 10 common commercial aircraft types analyzed in [10] 
had weight standard deviations ranging from 3.9% to 20.1% of their respective means. 

Aircraft 
Type 

Mean of 
Altitude 

Errors (ft) 

Standard Deviation 
of Altitude Errors 

(ft) 

Mean of 
Along-Track 
Errors (nmi) 

Standard Deviation 
of Along-Track 

Errors (nmi) 

% of 
Sample Size 

(2119) 
All Aircraft 201 2101 -0.15 2.06 100.0% 

B733 462 1056 0.22 2.36 5.9 
B735 -1317 1126 0.42 2.65 2.5 
B737 -2125 1031 0.76 2.72 3.7 
B738 -1658 1114 -0.30 2.13 4.4 
B752 -963 1535 -0.18 2.88 4.0 
CRJ7 -1330 1734 -0.24 1.50 5.5 
E135 2722 1440 -0.04 1.81 6.7 
E145 3191 1230 0.04 2.00 14.4 
MD82 -568 1006 -0.43 1.75 26.6 
MD83 -259 996 -0.30 1.99 11.0 

 

Table 1. Climb trajectory errors for a 5-minute look-ahead by aircraft type. 
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For the along-track errors, the means and standard deviations are not sensitive to weight variation between 60% 
and 100%. For a 5-minute prediction, the means of the along-track errors range between -0.25 nmi and 0.20 nmi 
while the along-track standard deviations range from 1.99 nmi to 2.07 nmi. Further investigation revealed that the 
along-track error for individual aircraft changed as expected (based on the equations of motion presented in Section 
II), but the overall Gaussian distribution of the nominal along-track errors observed in Fig 3 (i.e., using a weight 
value equal to 90% of each aircraft type’s maximum takeoff weight) did not change. 

The sensitivity analysis of CTAS trajectory predictions to weight variation presented here can be extended to the 
other parameters discussed in Section II. However, these results provide preliminary insight into the potential effect 
that real-world aircraft parameter uncertainty can have on climb trajectory predictions and, consequently, the overall 
effectiveness of the SA automation. The next step in this analysis is to develop a simulation environment to evaluate 
SA automation performance under different levels of uncertainty. 

VI. Simulation Methodology 
This section describes the methodology used to incorporate trajectory uncertainty into SA simulations. 

Trajectory predictions were used for both flight simulation and conducting automated conflict detection and 
resolution, and were generated by the Trajectory Synthesizer module of CTAS using the same data discussed in 
Section III. Three 2-hour traffic scenarios over 5 different days (April 23-27, 2008) were used to evaluate SA 
automation performance in the near-zero uncertainty case. A subset of these scenarios with the heaviest traffic loads 
was used to evaluate the SA automation under different levels of uncertainty. The analysis conducted for this study 
focused on strategic separation for operations in Fort Worth Center high altitude airspace. 

A. Generating Tracks in the CTAS Simulation Mode 
The methodology is a variation of those used in [14] and [16] for previous CTAS simulation experiments. 

However, instead of using an independent aircraft track generator (e.g., PAS), the CTAS simulation mode used in 
this study generates track updates based on the trajectories generated by the TS module of CTAS. As such, with a 
few exceptions related to simulation heuristics and trajectory prediction heuristics (e.g., selection of downstream fix 
when the flight is near a fix), simulated flights fly the way the TS predicts. As such, the simulation is expected to 
have near-zero uncertainty. Since these same trajectory predictions are also used for automated conflict detection 
and resolution in the nominal CTAS simulation mode, the SA automation is expected to detect and resolve nearly all 
conflicts under near-zero uncertainty. 

Figure 6. Effect of weight variation on altitude trajectory 
prediction errors. 
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To begin, a recording of actual Host track and flightplan data for all flights in and around Fort Worth Center is 
passed into the CTAS automation. In the CTAS simulation mode, each aircraft flies according to its actual radar 
tracks until it achieves a user-specified initialization condition. For climbing aircraft, the radar track update where 
altitude passes 14000 ft is its simulation initialization point, or IP. This criterion was chosen so that these flights 
could nominally have 2 minutes to achieve a more steady climb speed following the 250 kt speed restriction at 
10000 ft, and would nominally have 5 minutes of climbing flight for conflict detection (at a climb rate of 2000 
ft/minute) until the lower boundary of high altitude airspace. Conflict resolution may also be performed during this 
time if a conflict is detected with more than 3 minutes until predicted first loss of separation, and that point is in a 
high-altitude sector. Active temporary altitudes for climbing flights are automatically removed by the simulation to 
keep them on steady climbs up to their flightplan altitude. For flights approaching the Fort Worth Center boundary 
from neighboring Centers, their fifth track update in the system is their IP. This allows the CTAS ground speed filter 
to stabilize and produce a more accurate airspeed for subsequent simulated tracks. Once a flight has initialized, all 
subsequent radar tracks and flightplan amendments recorded in the Host computers for that flight are ignored. 
Aircraft in the CTAS simulation mode automatically fly according to flightplan amendments generated by CTAS. 
Flights landing in or near Fort Worth Center automatically descend at their minimum-fuel top-of-descent point as 
computed by the TS. 

B. Automated Conflict Detection and Resolution 
 Two types of simulations were run: (1) Open-loop simulations, in which CTAS simulated aircraft movement 

and performed conflict detection but did not attempt automated conflict resolution, and (2) Closed-loop simulations, 
in which CTAS generated trajectories and performed automatic conflict detection and resolution. The open-loop 
simulation provided a measure of the number of conflicts that the SA automation needed to detect and resolve. The 
closed-loop simulation gauged the ability of the system to detect and resolve conflicts. The conflict detection 
module was recently upgraded in CTAS [17] to update predicted traffic conflicts every 12 sec by comparing the 
most recent trajectory predictions available. 

Automatic conflict resolution is attempted for all detected conflicts that meet the following criteria (the same 
criteria used in [14]): 

 
• Predicted time to initial loss of separation is between 3 and 12 minutes, inclusive, 
• Predicted separation of less than 8 nmi and 1000 ft when both aircraft are in level flight at first loss of 

separation, 
• Predicted separation of less than 8 nmi and 1500 ft when one or both aircraft are climbing or descending at 

first loss of separation, 
• Predicted conflict is not between two aircraft merging to a common arrival metering fix, and 
• Predicted initial loss of separation is at or above FL240 and inside Fort Worth Center. 
 
The expanded separation criteria of 8 nmi and 1500 ft for conflict pairs involving transitioning aircraft helps to 

account for the higher trajectory prediction uncertainty (compared to conflicts between two level flights). Conflict 
resolution for arrivals merging to a common meter fix has been explored [18,19], but it is beyond the scope of this 
study. Conflicts are detected out to a 20-minute time horizon, but conflict resolutions are not attempted until the 
predicted time to first loss of separation falls to 12 minutes or less. 

The automatic conflict resolution algorithm being developed and tested at NASA Ames [20,21] was integrated 
into CTAS. Trial resolutions are modeled after the flight plan, altitude, and speed profile changes that controllers 
routinely issue to pilots in today’s operations. Each conflict is first assigned to one of several categories that define 
the set of acceptable resolution maneuvers for the conflict pair and the preferred flight to be maneuvered. The TS 
generates a 4D trajectory for each trial resolution maneuver one at a time. If the resulting trajectory is conflict-free, 
the maneuver is sent to the aircraft, which then executes it. Otherwise, the algorithm automatically continues to 
generate a 4D trajectory for the next preferred maneuver and probe it for conflicts until a conflict-free resolution is 
found. Resolution maneuvers are chosen based on the following criteria (the same criteria used in [14]): 

 
• Predicted separation of more than 10 nmi or 1000 ft when both aircraft are in level flight at first loss of 

separation, 
• Predicted separation of more than 10 nmi or 2000 ft when one or both aircraft are climbing or descending at 

first loss of separation, 
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• Resolution trajectory is conflict-free for at least 20 minutes from the time the resolution amendment is 
entered, 

• Predicted first loss of separation is more than 3 minutes in the future, 
• Maximum turn angle of 45 deg for auxiliary waypoint route amendment resolution trajectories, 
• Maximum range of 350 nmi to downstream capture fix for auxiliary waypoint resolutions, and 
• Increments of 1000 ft for climb and descent maneuvers. 

C. Incorporating Uncertainty into the CTAS Simulation Mode 
Both open- and closed-loop simulations were conducted in the near-zero uncertainty CTAS simulation mode to 

establish a baseline performance level for the SA automation. However, since the main objective was to determine 
how uncertainty affects the performance of this system, a mechanism was needed to incorporate uncertainty into the 
simulation. The method developed was to select a parameter (e.g., weight), and have a random number generator 
assign each flight a perturbation amount for that parameter. Flights were simulated in CTAS with these perturbations 
applied. However, trajectories for the SA automation were generated without perturbations. Note that the versatility 
of this mechanism allows for uncertainty in parameters such as weight, wind, and speed profile to be incorporated 
into the simulation both separately and simultaneously. 

D. Performance Metric 
The metric used in this study to assess the performance of the SA automation in CTAS is given below: 

 
 

SA Automation Performance = 1!
closed loop losses of separation

open loop losses of separation
 (10) 

It is the same metric used in [14], to allow for direct comparison. As such, both open- and closed-loop 
simulations were conducted and analyzed for each traffic scenario. As mentioned earlier, the open-loop simulation 
results provided a baseline for the number of conflicts that the SA automation had to detect and resolve, and the 
closed-loop simulation results measured how well the SA automation maintain safe separation. The values for the 
performance metric in the near-zero uncertainty simulations serve as a baseline for simulations with different levels 
of uncertainty. 

For every closed-loop simulation run, each loss of separation was examined to determine if it was due to 1) a 
trajectory-based automation error (trajectory modeling, conflict detection, or conflict resolution), or 2) a simulation 
error. For example, if climb uncertainty caused a conflict to not be detected until loss of separation occurs, then it 
was classified as a trajectory-based automation error. However, occasionally, flights were initialized late, violated 
current legal separation standards while flying into a high-altitude sector, or did not execute a resolution flightplan 
amendment. If these cases resulted in a loss of separation, then they were considered simulation errors. For this 
analysis, the number of closed-loop losses used in the performance metric was the only the sum of losses due to 
trajectory-based automation errors. 

VII. Performance in the Presence of Near-Zero Uncertainty 
Histograms of the altitude and along-track trajectory prediction errors for simulated climbing departures in the 

open-loop CTAS simulation mode are shown in Figs 7 and 8 for a look-ahead time of 5 minutes. The mean of the 
altitude errors is 311 ft, and the standard deviation is 109 ft. Vertical uncertainty for climbing aircraft in the nominal 
CTAS simulation mode is satisfactorily close to zero with an RMS value that is on the order of 20% of the vertical 
separation criteria used during conflict detection. Research is ongoing to calibrate these errors by addressing the 
underlying simulation and prediction heuristics. In addition, the mean of the along-track errors is 0.03 nmi, and the 
standard deviation is 0.50 nmi, which are also reasonably close to zero. None of these flights have trajectory 
uncertainty exceeding the current legal separation standard of 5 nmi laterally and 1000 ft vertically.  
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Closed-loop simulations were also conducted to evaluate SA automation performance in the CTAS simulation 

mode. Results are summarized in Table 2. Although overall SA automation performance is 99%, there is a 
noticeable difference in the performance metric between the 2-4 PM time period and the 4-6 PM and 6-8 PM time 
periods. The performance for the 4-6 PM and 6-8 PM time periods average to 100% over the 5 scenario days while 
the cumulative performance for the 2-4 PM time period is 97%. This is because the nominal CTAS simulation mode 
is not free of uncertainty (Figs 7-8). In fact, further analysis of the 5 flight pairs that lost separation found 1 case 
where a conflict-free resolution was not found, and 1 case where no trajectory was generated for conflict probing. Of 
the three remaining cases, two were due to erroneous conflict filtering (i.e. no resolution attempted), and one was 
due to an anomalous descent clearance by the simulation. If these three cases were excluded, then cumulative SA 
performance for the 2-4 PM period would be 99%, and overall SA automation performance would be 99.5%. 

 
 Time Period (local time)  

Scenario Date 2-4 PM 4-6 PM 6- 8 PM SA Performance 
Metric (Day) 

4/23/2008 100% 100% 100% 100% 
4/24/2008 92% 100% 100% 97% 
4/25/2008 97% 100% 100% 99% 
4/26/2008 100% 100% 100% 100% 
4/27/2008 96% 100% 100% 99% 

SA Performance 
Metric (Period) 

97% 100% 100%  

Table 2. Automated SA Performance Under Near-Zero Uncertainty. 

VIII. Performance in the Presence of Weight Uncertainty 
This section presents preliminary analysis on the effect of trajectory prediction uncertainty on automated conflict 

detection and resolution performance. The experiments conducted for this section are identical to those conducted 
for Section VII except that uncertainty in aircraft weight was incorporated into the near-zero simulation. Weight 
uncertainty was the first type of uncertainty chosen because it has a significant effect on climb trajectory modeling, 
and prior research on takeoff weights for common aircraft types observed that weight variation of more than 10% is 
common in current operations [10]. Three cases were considered: (1) weight uncertainty uniformly distributed 
between -10% and +10% (of each aircraft’s maximum takeoff weight in the CTAS aircraft database), (2) weight 
uncertainty uniformly distributed between -15% and +15%, and (3) weight uncertainty uniformly distributed 
between -20% and +20%. The 4-6 PM scenarios from Section VII were chosen for the experiments in this section 
because traffic in Fort Worth Center was busiest during that time period on those days, and the system was able to 
achieve an average of 100% performance in the near-zero uncertainty case for this subset of traffic scenarios. 

 

Figure 7. Climb trajectory altitude 
prediction errors for 5-minute look-

ahead (CTAS simulation mode). 

Figure 8. Climb trajectory along-track 
prediction errors for 5-minute look-

ahead (CTAS simulation mode). 
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A. Climb Uncertainty as a Function of Weight Uncertainty 
Histograms of altitude and along-track trajectory prediction errors for the open-loop CTAS simulation mode 

with weight uncertainties that were uniformly distributed between -10% and +10% (Figs 9-10), between -15% and 
+15% (Figs 11-12), and between -20% and +20% (Figs 13-14) are shown below for a look-ahead time of 5 minutes. 
The altitude and along-track errors have means close to zero, and the along-track errors have standard deviation of 
about 0.5 nmi in all 3 cases, However, the standard deviation of the altitude errors increases from 791 ft to 1091 ft to 
1485 ft for the ± 10%, ± 15%, and ± 20% simulations, respectively. As expected, the range of trajectory altitude 
errors for climbing departures increases as the range of weight uncertainties increases. Although the uncertainty 
characteristics are different than those for current operations (see Section III), testing the SA automation under these 
different conditions provides useful insight into its robustness. 

 

         
 
 
 
 

         
 
 
 

Figure 9. Climb trajectory altitude 
prediction errors for 5-minute look-ahead 

(± 10% weight uncertainty). 

Figure 10. Climb trajectory along-track 
prediction errors for 5-minute look-
ahead (± 10% weight uncertainty). 

Figure 11. Climb trajectory altitude 
prediction errors for 5-minute look-
ahead (± 15% weight uncertainty). 

Figure 12. Climb trajectory along-track 
prediction errors for 5-minute look-
ahead (± 15% weight uncertainty). 
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B. Performance Under Weight Uncertainty 
Closed-loop simulations were also conducted to determine how well the SA automation performed under 

different levels of uncertainty, and the results are summarized in Table 3. It should be emphasized that these results 
may be dependent on the conflict detection and resolution criteria used (the same as in [14]). Recall that average SA 
performance for the set of scenarios used in this section was 100% (see the 4-6 PM column of Table 2) in the near-
zero uncertainty case. SA automation performance remained steady at 100% when weight uncertainty in the 
simulation was uniformly distributed between -10% and +10%. These results may not seem to be in agreement with 
the sensitivity analysis of Section V, which showed that a 10% difference between actual and modeled aircraft 
weights increased average climb uncertainty by more than the current legal separation standard for a 5-minute 
prediction time. However, whether flights with large weight uncertainties maintain safe separation depends on how 
they interact with other flights. Additional simulations need to be conducted to ensure statistical significance for the 
results observed here, because the SA automation may not have been exposed to the full breadth and variety of 
conflict situations. 

Three losses of separation were observed in the ± 15% case, resulting in a slight decline in system performance 
to 98%. A steep drop in SA automation performance to 87% can be seen when the range of weight uncertainties was 
increased to ± 20%. This is significant, because it is expected that any future automated SA capability will be 
required to detect and resolve well over 95% of conflicts on a strategic time horizon of 3-20 minutes prior to first 
loss of separation [14]. 

A detailed description of the 19 closed-loop losses of separation in the ± 20% simulations can be found in the 
Appendix. Fifteen of these cases were due to climb uncertainty, of which 9 involved late detection (less than 3 
minutes prior to first loss) and 3 involved no detection. This implies that future research is necessary to enhance the 
robustness of the conflict detection module to climb uncertainty. Adding functionality to probe multiple climb 
trajectories ranging from low performance to high performance climbs [14] and expanding the conflict detection 
criteria are two possibilities. Although these approaches may reduce the number of late or missed detections, they 
could also increase delay due to unnecessary resolution maneuvers and the number of false alerts. This will be 
explored in future research to refine the results presented here. 

 
 Range of Weight Uncertainties in the Simulation 
Scenario Date and Time ± 10% ± 15% ± 20% 

4/23/2008, 4-6 PM 100% 97% 79% 
4/24/2008, 4-6 PM 100% 100% 91% 
4/25/2008, 4-6 PM 100% 97% 94% 
4/26/2008, 4-6 PM 100% 100% 77% 
4/27/2008, 4-6 PM 100% 96% 82% 

SA Performance Metric 
(Overall) 

100% 98% 87% 

Table 3. Automated SA Performance Under Different Levels of Weight Uncertainty. 

Figure 13. Climb trajectory altitude 
prediction errors for 5-minute look-
ahead (± 20% weight uncertainty). 

Figure 14. Climb trajectory along-track 
prediction errors for 5-minute look-
ahead (± 20% weight uncertainty). 
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One additional caveat of the results presented in this section is that the distribution of the trajectory prediction 

errors in the weight uncertainty simulations was roughly uniform, which does not match the Gaussian distribution of 
errors observed for current operations in Section III. Fewer losses of separation may occur if a Gaussian distribution 
was used to generate weight uncertainties instead of a uniform distribution, because this would result in fewer flights 
with large weight errors. On the other hand, the magnitude of the climb trajectory prediction errors observed in the 
weight uncertainty simulations (Figs 9-14) is smaller than what was observed in practice (Figs 2-3). More losses of 
separation may occur if the simulation climb trajectory errors were increased to match those of current operations. 
Research is ongoing to incorporate trajectory uncertainty into the simulation using multiple sources of uncertainty 
(e.g., weight, wind, and speed profile) simultaneously to replicate both the distribution and the magnitude of the 
uncertainties observed in actual operations. The SA automation will be tested using this higher-fidelity simulation 
environment to refine the results presented here. 

IX. Conclusions 
The climb uncertainty characteristics of a high-fidelity trajectory modeler were analyzed by processing Center 

Host radar track and flightplan data for two thousand departures in the Dallas/Fort Worth area. Categorization of the 
altitude errors by aircraft type revealed that altitude prediction error characteristics varied greatly among aircraft 
types. The altitude errors of aircraft types whose performance models were analyzed and improved in previous 
research were smaller than the altitude errors of aircraft types that were not, which suggests that aircraft model 
improvements can have a strong impact on overall climb trajectory prediction accuracy. 

A method was developed to measure the sensitivity of climb trajectory predictions to aircraft takeoff weight 
uncertainty. Results indicated that a 10% difference between the actual and modeled aircraft weights increased the 
magnitude of the altitude errors by about 1200 ft on average for a 5-minute look-ahead time. This is more than the 
current legal separation standard. This is significant, since prior research on takeoff weights for common aircraft 
types observed that weight variation of more than 10% is common in current operations. 

In addition, the performance of a fully automated SA system was analyzed under different levels of uncertainty. 
Results indicated that this system could successfully resolve 99% of conflicts in the high-altitude sectors of Fort 
Worth Center given current traffic levels and near-zero uncertainty. Trajectory uncertainty was then incorporated 
into the simulation in the form of weight uncertainty for a subset of traffic scenarios where system performance 
averaged 100% under near-zero uncertainty. System performance remained at 100% when weight uncertainties 
ranged between -10% and +10%. A slight decline in SA automation performance to 98% was observed in the ± 15% 
case, and a steep drop to 87% was observed when the range of weight uncertainties was expanded to ± 20%. This 
finding is significant, because it is expected that any future automated SA capability will be required to detect and 
resolve well over 95% of conflicts on a strategic time horizon of 3-20 minutes prior to first loss of separation. 

Appendix 
Tables A1-A5 summarize the cases in which separation was lost in the ± 20% weight uncertainty simulations in 

Section VIII. The tables contain information about the aircraft type for both aircraft, the flight phase at predicted 
first loss of separation (climbing, level, or descending) for both aircraft, the lateral and vertical distance between 
aircraft at minimum separation, the conflict detection parameters (time to first loss in minutes, minimum predicted 
horizontal separation in nmi, and minimum predicted vertical separation in ft), the cause of the loss of separation 
based on post-simulation analysis, and whether the loss of separation was due to a trajectory-based automation error 
(T) or to a simulation error (S). A detailed description of simulation errors can be found in Section VI. 

 
 AC1 

(type) 
AC2 

(type) 
Phase 

of 
Flight 

Miss 
Distance 
(nmi, ft) 

Conflict 
Detection 

(minutes, nmi, ft) 

Cause of Loss of Separation  

1 E45X SBR1 L/C 4.04, 455 3.4, 3.5, 883 no amendment, climb uncertainty T 
2 C56X E145 C/C 3.31, 624 1.6, 2.2 1383 late detection, climb uncertainty T 
3 MD88 MD10 C/L 3.46, 243 1.8, 4.0, 971 late detection, climb uncertainty T 
4 B733 E45X C/D 4.32, 386 4.7, 4.0, 1249 AC1 trajectory failure T 
5 MD82 MD82 C/L 4.60, 119 1.7, 2.4, 827 late detection, climb uncertainty T 
6 MD82 MD83 C/L 3.37, 275 2.0, 1.7, 827 late detection, climb uncertainty T 

Table A1. April 23, 2008 ± 20% closed-loop simulation. 
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 AC1 

(type) 
AC2 

(type) 
Phase 

of 
Flight 

Miss 
Distance 
(nmi, ft) 

Conflict 
Detection 

(minutes, nmi, ft) 

Cause of Loss of Separation  

1 CRJ1 BE9L C/L 2.57, 682 1.8, 1.7, 538 aircraft initialized with less than 3 minutes to go S 
2 FA20 A319 C/L 3.70, 8 2.3, 6.4, 946 late detection, climb uncertainty T 
3 WW24 DC87 C/L 2.66, 320 3.3, 6.5, 1402 late detection, climb uncertainty T 
4 DC10 B733 L/C 3.66, 668 2.3, 6.4, 902 late detection, climb uncertainty T 
5 CL30 B738 C/L 3.17, 573 no detection no detection, climb uncertainty T 

Table A2. April 24, 2008 ± 20% closed-loop simulation. 
 

 AC1 
(type) 

AC2 
(type) 

Phase 
of 

Flight 

Miss 
Distance 
(nmi, ft) 

Conflict 
Detection 

(minutes, nmi, ft) 

Cause of Loss of Separation  

1 E135 B733 C/L 4.72, 646 no detection no detection, climb uncertainty T 
2 E145 

 
CRJ7 

 
L/D 3.99, 355 

 
8.3, 4.3, 794 

 
resolution issued, conflict not resolved, descent 

uncertainty 
T 

Table A3. April 25, 2008 ± 20% closed-loop simulation. 
 

 AC1 
(type) 

AC2 
(type) 

Phase 
of 

Flight 

Miss 
Distance 
(nmi, ft) 

Conflict 
Detection 

(minutes, nmi, ft) 

Cause of Loss of Separation  

1 A306 MD82 L/C 4.98, 328 1.4, 6.4, 932 late detection, climb uncertainty T 
2 

E145 A320 
C/L 

3.16, 695 4.9, 2.9, 868 
resolution issued, conflict not resolved, climb 

uncertainty 
T 

3 MD83 DC10 C/L 3.77, 530 1.4, 2.3, 744 late detection, climb uncertainty T 
Table A4. April 26, 2008 ± 20% closed-loop simulation. 

 
 AC1 

(type) 
AC2 

(type) 
Phase 

of 
Flight 

Miss 
Distance 
(nmi, ft) 

Conflict 
Detection 

(minutes, nmi, ft) 

Cause of Loss of Separation  

1 LJ60 MD82 D/D 1.74, 915 4.6, 1.1, 949 no amendment, descent uncertainty T 
2 E135 B733 L/L 0.31, 736 19.5, 5.6, 0 AC1 trajectory failure T 
3 

DC10 E145 
L/C 

4.04, 516 6.8, 7.1, 712 
resolution issued, conflict not resolved, climb 

uncertainty T 
4 DC10 B733 L/C 4.37, 666 no detection no detection, climb uncertainty T 

Table A5. April 27, 2008 ± 20% closed-loop simulation. 
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